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Abstract—This paper has derived a new method for estimat-

ing the maximum ventricular elastance Emax by assuming

that the following two assumptions are simultaneously es-

tablished in a certain part of the ejection period: the ven-

tricular elastance E(t) changes linearly with time and the

dead volume V0 does not change. The method can estimate

Emax in a single beat without any change in the cardiac load

by measuring the ventricular pressure and either the ven-

tricular volume or outflow. The method does not need to

previously assign the approximation range of E(t) and does

not include the recursive procedure to search for the peak

time tmax that gives Emax. In an experiment in vivo, it could

be ascertained that the method can derive the estimate of

Emax roughly close to the true value.

Keywords – Emax, estimation, end-systolic ventricular elas-

tance, ESPVR, cardiac function

I. Introduction

The maximum value (Emax) of the ventricular elastance
(E(t)) has been thought to be a good index for quantify-
ing the ventricular contractile performance independently
of the cardiac load. However, the conventional method for
estimating Emax requires a change in the cardiac load dur-
ing several beats. To promote clinical application of Emax,
it is desirable to estimate Emax low-invasively on the basis
of information acquired within a single heartbeat without
any change in the cardiac load.
As one of such methods, the authors [1], [2] have pro-

posed the parameter optimization method (POM). The
POM can estimate Emax on the basis of ventricular pres-
sure and either ventricular volume or outflow acquired only
in a single beat. The POM does not need the normalized
time-varying ventricular elastance curve (EN (tN )) used in
Senzaki’s method [3]. In the POM, however, it takes much
computational time to search for the optimal parameters
determining the linear function to approximate the elas-
tance E(t), and the approximation range must be given
previously.
To overcome these defects of the POM, in this study, a

new method for single-beat estimation of Emax has been
developed by directly using linearity of ventricular elas-
tance in the ejection period. In the proposed method, it is
expected that the computational time can be reduced and
that the problem of how to determine the approximation
range of the elastance curve can be avoided.

II. Methods

A. Conventional Method

Let P (t) and V (t) denote ventricular pressure and vol-
ume, respectively. Ventricular contractility can be ex-
pressed by the ventricular elastance E(t) calculated from

E(t) =
P (t)

V (t)− V0
(1)

where V0 is the so-called dead volume defined as the
volume axis intercept of the regression line of the end-
systolic pressure-volume relation (ESPVR). Drastic change
in preload or afterload is necessary to obtain sufficiently
distinct end-systolic points to determine the ESPVR. Emax

is equal to the maximum value of E(t).

B. Assumptions

In this study, the following two assumptions are pro-
posed.

Assumption I: E(t) changes linearly with time in a cer-
tain part of the ejection period.

Assumption II: V0 in the ejection period is constant.

C. Method I using Pressure P (t) and Volume V (t)

First, consider the case where P (t) and V (t) can be mea-
sured directly, for example, with a pressure transducer and
a conductance catheter, respectively.
Define the unbiased ventricular volume (v(t)) as

v(t) def= V (t)− V0 (2)

Substitution of (2) to (1) yields

E(t) =
P (t)
v(t)

(3)

Assumption I means that the second derivative of E(t)
is zero, that is,

Ë(t) =
2P (t)v̇2(t)

v3(t)
− 2Ṗ (t)v̇(t)

v2(t)
− P (t)v̈(t)

v2(t)
+

P̈ (t)
v(t)

= 0 (4)

Solving (4) with respect to v(t) gives two solutions. How-
ever, the unbiased volume V (t)−V0 must be positive in the
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ejection period, and therefore, the positive solution vp(t) is
chosen as the feasible solution as follows:

vp(t) =
1

2P̈ (t)

[
2Ṗ (t)v̇(t) + P (t)v̈(t)−

√
{2Ṗ (t)v̇(t) + P (t)v̈(t)}2 − 8P (t)v̇2(t)P̈ (t)

]
(5)

Rewrite vp(t) as vp(P (t), Ṗ (t), P̈ (t), v̇(t), v̈(t)). From (2)
and (5), the dead volume V0 can be represented by

V0 = V (t)− vp(P (t), Ṗ (t), P̈ (t), v̇(t), v̈(t)) (6)

In addition to Assumption I, suppose that Assumption
II is also established at least during a certain part of the
ejection period, and then

v̇(t) = V̇ (t) (7)
v̈(t) = V̈ (t) (8)

hold. Thus, we have

V0 = V (t)− vp(P (t), Ṗ (t), P̈ (t), V̇ (t), V̈ (t)) (9)

It is true that if both Assumptions I and II hold, the right
hand side of (9) will be constant. However, the time range
in which both Assumptions I and II actually hold is not
exactly equal to the whole of the ejection period, and then
the right hand side of (9) must be the function of t in
the whole of the ejection period. To avoid misunderstand,
the left hand side of (9), V0 should be rewritten as a time
function Ṽ0(t) as follows:

Ṽ0(t)
def= V (t)− vp(P (t), Ṗ (t), P̈ (t), V̇ (t), V̈ (t)) (10)

An estimate (V̂0) of the dead volume V0 can be obtained
as the value of Ṽ0(t) at the time t when d

dt
Ṽ0(t) = 0, i.e.,

Ṽ0(t) is flat or a peak since Assumptions I and II are si-
multaneously established at that time. After substitution
of V̂0 to (1), the estimate (Ê(t)) of E(t) can be defined as

Ê(t) def=
P (t)

V (t)− V̂0

(11)

Finally, obtain the estimate (Êmax) of Emax as follows:

Êmax
def= max

tbe<t≤tee

Ê(t) (12)

where tbe and tee are the beginning and the end time of
ejection, respectively.

D. Method II using Pressure P (t) and Outflow i(t)

Next, consider the different case where V (t) cannot di-
rectly be measured but ventricular outflow (i(t)) can be
measured with a flowmeter or an ultrasound Doppler im-
age. Let P (t) be still measurable.

Define the ejecting volume or the integrated value (I(t))
of the outflow i(t) from tbe to t as

I(t) def=
∫ t

tbe

i(t)dt (13)

Since i(t) = 0 for any t from the end-diastolic time (ted) to
tbe, V (t) can be represented as

V (t) = V (tbe)− I(t) = V (ted)− I(t) = Ved − I(t) (14)

where Ved is the end-diastolic volume. The relation of (14)
can transform (1) to

E(t) =
P (t)

Ved − V0 − I(t)
(15)

Differentiating V(t) with respect to t, we have

V̇ (t) = −i(t) (16)
V̈ (t) = −i̇(t) (17)

Substitution of (14), (16) and (17) to (10) yields

Ved− Ṽ0(t)
def= I(t)+vp(P (t), Ṗ (t), P̈ (t),−i(t),−i̇(t)) (18)

In the same way as Method I, let an estimate ( ̂Ved − V0)
of Ved − V0 be the value of Ved − Ṽ0(t) at the time t when
Ved − Ṽ0(t) is flat or a peak. Substitute ̂Ved − V0 into (15)
and we have Ê(t) as follows:

Ê(t) def=
P (t)̂Ved − V0 − I(t)

(19)

Finally, obtain Êmax according to (12).

E. Experimental Protocols and Data Processing

In vivo experiments were carried out by using an adult
goat weighing 50kgs in an open chest. An conductance
catheter (Leycom; Sigma 5) was inserted into the left
ventricle via the apex to measure left ventricular volume
V (t). Aortic flow i(t) was measured at the ascending aorta
with an electromagnetic flow meter (Nihon Kohden; MFV-
3100), and left ventricular pressure P (t) was measured with
a catheter-tip pressure transducer (Camino; 420).
In our calculation, a mathematical processing language

Mathematica (Wolfram Research Inc.) was employed for
sampled data of P (t), V (t) and i(t) with the sampling in-
terval of ∆t = 10ms. In particular, its curve fitting func-
tion Fit was used to yield polynomial functions P (t), V (t)
and i(t) in the ejection period for eliminating measurement
noises. This is because the first and the second derivatives
of P (t), V (t) and i(t), which are very sensitive to noise, are
required in calculation of (10) and (18).

III. Results

Fig. 1 shows an example of pressure-volume loops (PV-
loops) obtained in our experiment. The PV-loops are de-
picted during successive five beats after manually clamping



Fig. 1. An example of pressure-volume loops in manually clamping
the pulmonary artery.

the pulmonary artery. The line a) is an ESPVR manually
determined on the basis of the end-systolic points. In this
example, the corresponding dead volume V0 can be ob-
tained as V0 = 127mL.
The sampled values of P (t), V (t) and i(t) corresponding

to the ejection period of the loop b) in Fig. 1 are depicted
as dots in Figs. 2, 3 and 4, respectively. The sampled val-
ues were approximated by the solid curves shown in these
figures. The orders of the polynomials were 3, 3 and 6 for
P (t), V (t) and i(t), respectively.

Fig. 2. Sampled values (dots) of left ventricular pressure P (t) corre-
sponding to Fig. 1b) and its approximation (solid curve).

Fig. 3. Sampled values (dots) of left ventricular volume V (t) corre-
sponding to Fig. 1b) and its approximation (solid curve).

Fig. 5 shows Ṽ0(t) and Ved−Ṽ0(t). The upper curve Ṽ0(t)
was calculated from (10) substituted by approximated time
functions P (t), V (t) and their derivatives corresponding to
Figs. 2 and 3. In the same way, the lower curve Ved − Ṽ0(t)

Fig. 4. Sampled values (dots) of aortic flow rate i(t) corresponding
to Fig. 1b) and its approximation (solid curve).

was calculated from (18) substituted by P (t), i(t) and their
derivatives corresponding to Figs. 2 and 4. In Fig. 5, the
parts a) and b) of Ṽ0(t) satisfy d

dt
Ṽ0(t) = 0. However, the

part b) corresponds to the peak time tmax that maximizes
E(t). Then, the estimated dead volume V̂0 can be given
as the value of Ṽ0(t) of the part a). In this case, we have
V̂0 = 126mL. In the same way, the part d) of Ved − Ṽ0(t)
can be chosen as the estimated value ̂Ved − V0, because
the part d) is the closest to the part a). Thus, we havêVed − V0 = 60mL.
Substitutions of V̂0 and ̂Ved − V0 to (11) and (15) yielded

the estimates Ê(t) as shown in Figs. 6 and 7, respec-
tively. In both figures, the shape of Ê(t) is nearly lin-
ear. The maximum value of each Ê(t) gives the estimated
maximum elastance Êmax, and thus, we have Êmax =
2.62mmHg/mL using pressure and volume shown in Fig. 6,
and Êmax = 2.76mmHg/mL using pressure and flow rate
shown in Fig. 7.
The above process was applied to each ejection period

of the five PV-loops shown in Fig. 1. Table 1 shows mean
values and standard deviations of estimates V̂0 and Êmax

averaged over the five beats. The ESPVRs can be depicted
as shown in Fig. 8 using the estimates of a) and b) of Ta-
ble 1. The Table 1 and Fig. 8 indicate that the proposed
methods could yield the estimated values roughly close to
the true values.

Fig. 5. Ṽ0(t) and Ved − Ṽ0(t) calculated from (10) and (18), re-

spectively. The peak values a) and d) give the estimates, V̂0 and̂Ved − V0, respectively.
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Fig. 6. Estimate Ê(t) of the left ventricular elastance E(t) cal-
culated from (11) on the basis of approximated P (t) and V (t)
(solid curve), and their measured values (dots).

Fig. 7. Estimate Ê(t) of the left ventricular elastance E(t) calculated
from (19) on the basis of approximated P (t) and i(t) (solid curve),
and their measured values (dots).

IV. Discussion

The result of Table 1 and comparison between Fig. 1 and
Fig. 8 imply that the proposed method (Methods I and II)
can estimate Emax beat by beat with reasonable accuracy
without any change in the cardiac load. However, the stan-
dard deviation of each estimate is not so small. This is
because the method depends strongly on the waveform of
the time series data and is sensitive to noise. To cope with
this defect, the time series data such as P (t), V (t) and i(t)
should be averaged over several beats which have almost
the same cardiac cycle as one another in the steady state
or under a constant cardiac load.
The proposed method does not need the procedure for

optimizing unknown parameters as the POM does, and
then the proposed method requires much less computa-
tional time for estimation than the POM. Moreover, the
POM must previously assign the approximation range
where the elastance E(t) can be regarded as a line. On the
other hand, in the proposed method, the adequate part in
which both Assumptions I and II hold can automatically
be given as the time when Ṽ0(t) or Ved − Ṽ0(t) is flat or a
peak.
Senzaki’s method [3] also does not need the optimizing

procedure but needs the normalized ventricular elastance
curve EN (tN ) and the recursive procedure for searching
for the peak time tmax. In this paper, unfortunately, the
estimation accuracy has not yet been compared among the
proposed method, the POM and Senzaki’s method.

Fig. 8. ESPVRs depicted by means of the estimates of a) and b) of
Table 1.

Table 1 Estimates V̂0 and Êmax averaged over the five beats
shown in Fig. 1 or Fig. 8.

a) b)
True Estimate using Estimate using
value P (t) and V (t) P (t) and i(t)

V̂0 127 123(±5.3) 126(-)
(mL)

Êmax 2.9 2.5(±0.54) 2.8(±0.50)
(mmHg/mL)

V. Conclusions

The present study has derived a new method for estimat-
ing the maximum ventricular elastance Emax by assuming
that the following two assumptions are simultaneously es-
tablished in a certain part of the ejection period: 1) the
ventricular elastance E(t) changes linearly with time; 2)
the dead volume V0 does not change. The method can es-
timate Emax in a single beat without any change in preload
or afterload by measuring the ventricular pressure and ei-
ther the ventricular volume or outflow. The method does
not need to previously assign the approximation range of
E(t) and does not include the recursive procedure to search
for the peak time tmax that gives Emax. In the experiment
in vivo, it could be ascertained that the method can give
the estimate of Emax roughly close to the true value ob-
tained from the conventional method.
In further studies, the estimation accuracy of the pro-

posed method should be compared with that of other
single-beat estimation methods.
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